terça-feira, 3 de outubro de 2017

Hubble vê o mais distante cometa ativo

O telescópio espacial Hubble fotografou um cometa ativo dirigindo-se na direção do Sol, a uma enorme distância de 2,41 bilhões de quilômetros da nossa estrela (para além da órbita de Saturno).

Hubble Uncovers the Farthest Active Inbound Comet Yet Seen

© Hubble (cometa K2)

Ligeiramente aquecido pelo longínquo Sol, já começou a desenvolver uma nuvem de poeira difusa com quase 129 mil quilômetros de comprimento, a que chamamos coma ou cabeleira, envolvendo um núcleo sólido e minúsculo de gás e poeira congelados. Estas observações representam os sinais mais precoces de atividade, alguma vez vistos, num cometa que entra na zona planetária do Sistema Solar pela primeira vez.

O cometa, chamado C/2017 K2 (PANSTARRS) ou "K2", viajando durante milhões de anos desde os confins distantes e frios do Sistema Solar, onde a temperatura é de aproximadamente –262 ºC. A órbita do cometa indica que é oriundo da Nuvem de Oort, uma região esférica com quase um ano-luz em diâmetro e que contêm centenas de bilhões de cometas. Os cometas são remanescentes gelados da formação do Sistema Solar há 4,6 bilhões de anos e, portanto, têm uma composição gelada pristina.

"K2 está tão longe do Sol e é tão frio, que sabemos com certeza que a atividade não é produzida, como nos outros cometas, pela evaporação de água gelada," comenta David Jewitt, pesquisador da Universidade da Califórnia em Los Angeles, EUA. "Em vez disso, pensamos que a atividade se deve à sublimação [passagem do estado sólido diretamente para o estado gasoso] de supervoláteis à medida que o K2 faz a sua primeira entrada na zona planetária do Sistema Solar. É por isso que é especial. Este cometa está tão distante e é tão incrivelmente frio que a água gelada é como se fosse rocha."

Com base nas observações do Hubble da cabeleira de K2, a luz solar está aquecendo os gases voláteis congelados - como oxigênio, nitrogênio, dióxido de carbono e monóxido de carbono, que cobrem a superfície gelada do cometa. Estes gelos voláteis saem do cometa e liberam poeira, formando a coma. Estudos anteriores da composição de cometas, perto do Sol, revelaram a mesma mistura de gelos voláteis.

"Eu penso que estes voláteis estão espalhados pelo cometa K2 e, no início, há bilhões de anos, provavelmente em cada cometa da Nuvem de Oort," acrescenta Jewitt. "Mas estes voláteis à superfície são os que absorvem calor do Sol, então, em certo sentido, o cometa está expelindo a sua pele externa. A maioria dos cometas são descobertos muito mais perto do Sol, perto da órbita de Júpiter, de modo que quando os encontramos, estes voláteis superficiais já foram sublimados. Por isso, acho que o K2 é o cometa mais primitivo que já vimos."

O cometa K2 foi descoberto em maio de 2017 pelo Pan-STARRS (Panoramic Survey Telescope and Rapid Response System) no Havaí, um projeto de pesquisa do programa de observações Near-Earth Object da NASA. Jewitt usou o instrumento WFC3 (Wide Field Camera 3) do Hubble no final de junho para obter um olhar mais detalhado sobre o visitante gelado.

O "olho" afiado do Hubble revelou a extensão da cabeleira e também ajudou Jewitt a estimar o tamanho do núcleo, menos de 19 km de comprimento, embora a coma tênue tenha um tamanho equivalente a 10 diâmetros terrestres.

Esta vasta coma deve ter-se formado quando o cometa ainda estava mais longe do Sol. Através de imagens de arquivo, a equipe de Jewitt encontrou imagens do K2 e da sua coma tênue obtidas em 2013 pelo CFHT (Canada-France-Hawaii Telescope) no Havaí. Mas o objeto era tão fraco que ninguém notou.

"Nós pensamos que o cometa está ativo, continuamente, há pelo menos quatro anos," afirma Jewitt. "Nos dados do CFHT, o K2 tinha uma cabeleira já a 3,2 bilhões de quilômetros do Sol, quando se encontrava entre as órbitas de Urano e Netuno. Já estava ativo e eu penso que assim tem permanecido continuamente. À medida que se aproxima do Sol, está ficando cada vez mais quente e a atividade cresce."

Mas, curiosamente, as imagens do Hubble não mostram a existência de uma cauda no K2, também característica dos cometas. A sua ausência indica que as partículas liberadas do cometa são demasiado grandes para a pressão de radiação do Sol as "varrer" e formar uma cauda.

Os astrônomos terão muito tempo para realizar estudos detalhados do cometa K2. Durante os próximos cinco anos, continuará a sua viagem até ao Sistema Solar interior antes de atingir a sua maior aproximação ao Sol em 2022, logo além da órbita de Marte. "Vamos monitorar, pela primeira vez, o desenvolvimento de atividade de um cometa que viaja desde a Nuvem de Oort ao longo de uma extraordinária gama de distâncias," comenta Jewitt. "Com a aproximação do Sol, deverá tornar-se cada vez mais ativo e, presumivelmente, formará uma cauda."

O telescópio espacial James Webb da NASA, um observatório infravermelho com lançamento previsto para 2019, pode medir o calor do núcleo, o que daria uma estimativa mais precisa do seu tamanho.

Os resultados foram publicados na revista The Astrophysical Journal Letters.

Fonte: Space Telescope Science Institute

domingo, 24 de setembro de 2017

Uma conjunção de cometas

Uma conjunção de cometas foi registrada neste belo campo estrelado fotografado na manhã do dia 17 de Setembro de 2017.

cometas ASASSN e PanSTARRS

© José J. Chambó (cometas ASASSN e PanSTARRS)

Descoberto em Julho de 2017 pela pesquisa robótica do céu, que busca supernovas, o cometa C/2017 O1 ASASSN está na parte inferior esquerda da imagem. O brilho esverdeado visível da coma é produzido pela fluorescência de moléculas de carbono diatômicas devido a luz do Sol.

Aproximando do periélio, a sua menor distância do Sol, o cometa que pode ser visto por binóculos quando estava somente a 7,2 minutos-luz de distância da Terra.

No mesmo campo é possível ver o cometa C/2015 ER61 PanSTARRS com sua longa cauda, na parte superior direita da imagem; ele estava a quase 14 minutos-luz de distância da Terra, quando a imagem foi efetuada.

Muitos anos-luz mais distante, o fundo estrelado inclui as nebulosas fracas e empoeiradas da Via Láctea. O aglomerado bem conhecido das Plêiades pode ser observado na parte superior direita da imagem.

Fonte: NASA

domingo, 3 de setembro de 2017

Encontros próximos do tipo estelar

Os movimentos de mais de 300.000 estrelas estudadas pelo satélite Gaia da ESA revelam que encontros próximos raros com o nosso Sol podem perturbar a nuvem de cometas nos confins do nosso Sistema Solar, enviando alguns na direção da Terra no futuro distante.

cometas esperando por um encontro estelar

© ESA (cometas esperando por um encontro estelar)

À medida que o Sistema Solar se move através da Galáxia, e à medida que outras estrelas se movem nas suas órbitas, os "encontros próximos" são inevitáveis, embora "próximo" ainda signifique muitos trilhões de quilômetros.

Uma estrela, dependendo da sua massa e velocidade, precisaria chegar até cerca de 60 trilhões de quilômetros antes de começar a ter um efeito no distante reservatório de cometas do Sistema Solar, a Nuvem de Oort, que estende-se até 15 trilhões de quilôetros do Sol, cerca de 100.000 vezes a distância Terra-Sol.

Em comparação, o planeta mais distante, Netuno, orbita a uma distância média de aproximadamente 4,5 bilhões de quilômetros, ou 30 vezes a distância Terra-Sol.

A influência gravitacional das estrelas que passam perto da Nuvem de Oort pode perturbar os percursos dos cometas que aí residem, expelindo-os para órbitas que os aproximam do Sistema Solar interior.

Embora se pense que estas perturbações sejam responsáveis por alguns dos cometas que aparecem nos nossos céus a cada cem a mil anos, também têm o potencial de colocar cometas numa rota de colisão com a Terra ou com os outros planetas.

Compreender as movimentações passadas e futuras das estrelas é um objetivo fundamental do Gaia, pois recolhe dados precisos sobre posições e movimentos estelares ao longo da sua missão de cinco anos. Após 14 meses, o primeiro catálogo de mais de um bilhão de estrelas foi divulgado recentemente, que incluiu as distâncias e movimentos, em todo o céu, de mais de dois milhões de estrelas.

Ao combinar os novos resultados com informações existentes, os astrônomos começaram uma pesquisa detalhada de estrelas que passavam perto do nosso Sol.

Até agora, os movimentos de mais de 300.000 estrelas, em relação ao Sol, foram traçados através da Via Láctea e a sua aproximação máxima foi determinada até cinco milhões de anos no passado e futuro.

Destas, descobriu-se que 97 vão passar até 150 trilhões de quilômetros, enquanto 16 chegam a 60 trilhões de quilômetros.

Embora estes 16 encontros sejam considerados razoavelmente próximos, destaca-se um encontro particularmente próximo, o da estrela Gliese 710, daqui a 1,3 milhões de anos. Prevê-se que passe a apenas cerca de 2,3 trilhões de quilômetros (aproximadamente 16.000 vezes a distância Terra-Sol), bem dentro da Nuvem de Oort.

A estrela já está bem documentada e, graças aos dados do Gaia, a distância estimada do encontro foi recentemente atualizada. Anteriormente, havia um grau de certeza de 90% que passaria entre 3,1 e 13,6 trilhões de quilômetros. Agora, os dados mais precisos sugerem que passará entre 1,5 e 3,2 trilhões de quilômetros, sendo 2,3 trilhões de quilômetros a distância mais provável.

Além disso, embora Gliese 710 tenha uma massa correspondente a 60% da massa do Sol, viaja muito mais devagar que a maioria das estrelas: quase 50.000 km/h na maior aproximação, em comparação com a média de 100.000 km/h.

A velocidade da passagem significa que terá muito mais tempo para exercer a sua influência gravitacional sobre os corpos da Nuvem de Oort, potencialmente enviando enxames de cometas na direção do Sistema Solar.

Apesar da sua velocidade mais lenta, durante sua aproximação máxima, ainda aparecerá como o objeto mais brilhante e veloz do céu noturno.

Igualmente importante, o estudo mais recente usou as medições do Gaia para fazer uma estimativa geral da frequência de encontros estelares, levando em consideração incertezas como estrelas que podem não ter sido observadas no catálogo existente.

Para 5 milhões de anos no passado e no futuro, a frequência global de encontros está estimada em aproximadamente 550 estrelas por cada milhão de anos, chegando até 150 trilhões de quilômetros, das quais cerca de 20 alcançam uma distância de 30 trilhões de quilômetros.

Isto equivale, aproximadamente, a um potencial encontro "próximo" a cada mais ou menos 50.000 anos. É importante realçar que não é garantida a perturbação de cometas pela estrela, de modo a entrarem nas regiões internas do Sistema Solar e, caso isso aconteça, que a Terra esteja na "linha de fogo".

Estas estimativas serão refinadas com os lançamentos futuros dos dados do Gaia. O segundo ocorrerá em abril de 2018, contendo a informação de aproximadamente 20 vezes o número de estrelas do primeiro catálogo, e também de estrelas muito mais distantes, permitindo a reconstrução até 25 milhões de anos no passado e no futuro.

Fonte: ESA

domingo, 30 de julho de 2017

A visita de um novo cometa

Uma nova descoberta de cometa ocorreu este mês.

cometa O1 ASAS-SN

© iTelescope/Rolando Ligustri (cometa O1 ASAS-SN)

A surpresa no céu é o cometa C/2017 O1 (ASAS-SN), um cometa de longo período que está visitando o Sistema Solar interno. Quando foi descoberto em 19 de julho de 2017 pelo sistema All Sky Automated Survey for Supernovae (ASAS-SN), o cometa C/2017 O1 estava com fraca magnitude +15,3 na constelação Cetus. Em apenas alguns dias, no entanto, o cometa subiu cem vezes em brilho até a magnitude +10, e deveria estar no momento no alcance de binóculos. Espera-se que o cometa chegue em torno de uma magnitude de +8 em outubro, quando transita do hemisfério sul para o norte.

A ASAS-SN é uma pesquisa automatizada para caçar supernovas em ambos os hemisférios, com instrumentos baseados em Haleakala no Havaí e Cerro Tololo no Chile. Embora a pesquisa atinja as supernovas, na ocasião também levanta outros fenômenos astronômicos interessantes. Esta é a primeira descoberta de cometa para a equipe ASAS-SN, à medida que se juntam às fileiras de PanSTARRS, LINEAR e outros prolíficos caçadores de cometas robóticos.

Evocar o próprio nome "ASAS-SN" parece ter desencadeado também uma controvérsia menor, uma vez que a União Astronômica Internacional (IAU) recusou nomear o cometa após a pesquisa, listando-o simplesmente como "C/2017 O1". O motivo é que "ASAS-SN" pode evidenciar a palavra "Assassino". Por outro lado, simplesmente continuaremos nos referindo ao cometa como "O1 ASAS-SN" como um reconhecimento do esforço da equipe e sua ótima descoberta.

Em uma órbita parabólica de longo período, provavelmente medido em milhões de anos, o O1 ASAS-SN tem uma órbita inclinada em 40 graus em relação à eclíptica e atinge o periélio com 1,5 UA do Sol, apenas além da órbita de Marte, em 14 de outubro, e fica mais próximo da Terra quatro noites depois, a uma distância de 108 milhões de quilômetros. É provavelmente a primeira passagem do deste cometa através do Sistema Solar interno.

Atualmente localizado na constelação Eridanus, ele caminhará para o norte através de Taurus e Perseus nos próximos meses, pois começa a longa subida para o polo celestial norte. Em meados de outubro, o cometa O1 ASAS-SN deslocará um grau por dia através da constelação Camelopardalis.

Na ocular um pequeno cometa geralmente parece um pequeno aglomerado globular difuso que se recusa a encaixar no foco. Procure os céus escuros em sua busca cometária, já que o mínimo de poluição luminosa afetará a visibilidade.  Um telescópio de 8 polegadas pode captá-lo especialmente agora que a Lua está na fase crescente e não retornará ao céu da manhã até 6 de agosto.

Fonte: Universe Today & ASAS-SN

sexta-feira, 28 de julho de 2017

Os cometas grandes e distantes são comuns

Os cometas que levam mais de 200 anos para completar uma translação em torno do Sol são manifestamente difíceis de estudar.

animação de um cometa

© NASA/JPL-Caltech (animação de um cometa)

Dado que passam a maior parte do seu tempo nas zonas mais remotas do Sistema Solar, muitos dos cometas de longo período nunca se aproximam do Sol durante a vida de um ser humano. Na verdade, aqueles que viajam para dentro, oriundos da Nuvem de Oort - um grupo de corpos gelados a cerca de 300 bilhões de quilômetros do Sol - podem ter períodos de centenas ou até milhões de anos.

A sonda WISE da NASA, examinando todo o céu em comprimentos de onda infravermelhos, forneceu novas informações sobre estes viajantes distantes. Os cientistas descobriram que existem cerca de sete vezes mais cometas de longo período, medindo pelo menos 1 km de tamanho, do que se havia previsto anteriormente. Também descobriram que os cometas de longo período são, em média, até duas vezes maiores do que os cometas da família de Júpiter, cujas órbitas são moldadas pela gravidade de Júpiter e têm períodos inferiores a 20 anos.

Os pesquisadores também observaram que, em oito meses, passaram pelo Sol três a cinco vezes mais cometas de longo período do que havia sido previsto.

"O número de cometas está relacionado com a quantidade de material que restou da formação do Sistema Solar," afirma James Bauer, professor da Universidade de Maryland. "Nós agora sabemos que existem mais pedaços relativamente grandes de material antigo, provenientes da nuvem de Oort, do que era considerado."

A Nuvem de Oort está demasiado distante para ser observada pelos telescópios atuais, mas pensa-se que seja uma distribuição esférica de pequenos corpos gelados nas extremidades do Sistema Solar. A densidade dos cometas no seu interior é baixa, de modo que a probabilidade de aí colidirem é também muito baixa. Os cometas de longo período que o WISE observou provavelmente foram expulsos da Nuvem de Oort há milhões de anos. As observações foram realizadas durante a missão principal da sonda, antes de mudar de nome para NEOWISE e ser reativada para ter como alvo os objetos próximos da Terra.

"O nosso estudo é um olhar raro sobre objetos perturbados na Nuvem de Oort," comenta Amy Mainzerdo, do Jet Propulsion Laboratory (JPL) da NASA e pesquisadora principal da missão NEOWISE. "São os objetos mais pristinos do que era o Sistema Solar quando este se formou."

Os astrônomos já tinham estimativas mais amplas de quantos cometas de longo período e de quantos cometas da família de Júpiter existiam no nosso Sistema Solar, mas não tinham uma boa maneira de medir os tamanhos dos cometas de longo período. Isto porque um cometa tem uma coma, uma nuvem de gás e poeira que aparece nublada em imagens e obscurece o núcleo cometário. Mas usando os dados do WISE, que mostram o brilho infravermelho desta coma, foi possível subtraí-la e estimar os tamanhos dos núcleos destes cometas. Os dados pertencem a observações do WISE, de 2010, de 95 cometas da família de Júpiter e de 56 cometas de longo período.

Os resultados reforçam a ideia de que os cometas que passam mais frequentemente pelo Sol tendem a ser menores do que aqueles que passam muito mais tempo longe dele. Isto porque os cometas da família de Júpiter recebem mais exposição ao calor, o que faz com que substâncias voláteis, como a água, sublimem e arrastem outro material para longe da superfície do cometa.

"Isto significa que há uma diferença evolutiva entre os cometas da família de Júpiter e os cometas de longo período," comenta Bauer.

A existência de bastantes mais cometas de longo período do que o previsto sugere que um maior número deles provavelmente colidiu com planetas, fornecendo materiais gelados dos confins do Sistema Solar.

Foi encontrado também agrupamentos nas órbitas dos cometas de longo período, sugerindo a existência de corpos maiores que se separaram para formar estes grupos.

Os resultados serão importantes para avaliar a probabilidade de cometas impactarem os planetas do nosso Sistema Solar, incluindo a Terra.

"Os cometas viajam muito mais depressa do que os asteroides, e alguns são muito grandes," acrescenta Mainzer. "Estudos como este vão ajudar-nos a definir o tipo de perigo que os cometas de longo período podem representar."

O estudo foi publicado na revista The Astronomical Journal.

Fonte: Jet Propulsion Laboratory

quinta-feira, 15 de junho de 2017

Ligação entre cometa e a atmosfera terrestre

A desafiante descoberta, pela missão Rosetta da ESA, de vários isótopos de gás nobre xenônio no cometa 67P/Churyumov-Gerasimenko estabeleceu o primeiro elo quantitativo entre o cometa e a atmosfera da Terra.

cometa Churyumov-Gerasimenko

© ESA/Rosetta (cometa 67P/Churyumov-Gerasimenko)

A mistura de xenônio encontrada no cometa é muito parecida com U-xenônio, a mistura primordial que os cientistas acreditam ter sido trazida para a Terra durante os estágios iniciais da formação do Sistema Solar. Estas medições sugerem que os cometas contribuíram com cerca de um-quinto da quantidade de xenônio na antiga atmosfera da Terra.

O xenônio é um gás incolor e inodoro que compõe menos de um bilionésimo do volume da atmosfera da Terra e pode conter a chave para responder a uma pergunta de longa data sobre os cometas: contribuíram estes para a transferência de material para o nosso planeta quando o Sistema Solar estava se formando, há cerca de 4,6 bilhões de anos atrás? E, em caso afirmativo, quanto?

O gás nobre xenônio é formado numa variedade de processos estelares, desde as fases tardias de estrelas de massa baixa e intermediária, até explosões de supernovas, e até fusões de estrelas de nêutrons. Cada um destes fenômenos dá origem a diferentes isótopos do elemento. Os isótopos mais leves do xenônio (124Xe and 126Xe) são produzidos durante explosões de supernova, os isótopos de massa intermediária (127Xe, 128Xe, 129Xe, 130Xe, 131Xe and 132Xe) são produzidos durante a fase do Ramo Gigante Assintótico de estrelas de massa baixa e intermediária evoluídas e os isótopos mais pesados (134Xe and 136Xe) são produzidos durante a fusão de estrelas de nêutrons. O Ramo Gigante Assimtótico é uma região do diagrama de Hertzsprung-Russell, populado por estrelas de massa baixa e moderadas. Este é um período de evolução estelar que ocorre em todas as estrelas entre 0,6 a 10 massas solares, no fim de sua vida. Como um gás nobre, o xenônio não interage com outras espécies químicas e, portanto, é um importante vestígio do material a partir do qual o Sol e os planetas se originaram e que, por sua vez, deriva de gerações de estrelas anteriores.

"O xenônio é o gás nobre estável mais pesado e, talvez, o mais importante por causa dos seus muitos isótopos que se originam em diferentes processos estelares: cada um fornece uma informação adicional sobre as nossas origens cósmicas," diz Bernard Marty da CRPG-CNRS e Universidade de Lorraine, França.

É por causa desta "impressão digital" especial que os cientistas têm usado o xenônio para investigar a composição do Sistema Solar inicial, que fornece pistas importantes para compelir a sua formação. Ao longo das últimas décadas, recolheram amostras da abundância relativa dos seus vários isótopos em diferentes locais: na atmosfera da Terra e de Marte, nos meteoritos provenientes de asteroides, em Júpiter e no vento solar, o fluxo de partículas carregadas que fluem do Sol.

A mistura de xenônio presente na atmosfera do nosso planeta contém uma maior abundância de isótopos mais pesados em relação aos mais leves; no entanto, isto resulta dos elementos mais leves escaparem mais facilmente da atração gravitacional da Terra e sendo perdidos para o espaço em maiores quantidades. Ao corrigir a composição atmosférica do xenônio para este efeito desenfreado, os cientistas na década de 1970 calcularam a composição da mistura primordial deste gás nobre, conhecido como U-xenônio, que já estava presente na Terra.

Este U-xenônio continha uma mistura de isótopos leves similar à dos asteroides e do vento solar, mas incluiu quantidades significativamente menores dos isótopos mais pesados.

"Por estas razões, há muito que suspeitamos que o xenônio na atmosfera inicial da Terra poderia ter uma origem diferente da mistura média deste gás nobre encontrado no Sistema Solar," diz Bernard.

Uma das explicações é que o xenônio no Sistema Solar deriva diretamente da nuvem protossolar, uma massa de gás e poeira que deu origem ao Sol e aos planetas, enquanto o xenônio encontrado na atmosfera terrestre foi entregue num estágio posterior por cometas que, por sua vez, se podem ter formado a partir de uma mistura de material diferente.

Com a visita da missão Rosetta da ESA ao cometa 67P/Churyumov-Gerasimenko, um fóssil gelado do Sistema Solar inicial, os cientistas poderiam finalmente reunir os dados, há muito procurados, para testar esta hipótese.

O xenônio é muito difuso na atmosfera fina do cometa, então foi necessário aproximar a Rosetta do cometa, entre 5 a 8 km da superfície do núcleo, por um período de três semanas, para que o ROSINA, o espectrômetro da sonda Rosetta para análise de íons e nêutrons, pudesse obter uma detecção significativa de todos os isótopos relevantes.

Voar tão perto do cometa foi extremamente difícil, por causa da grande quantidade de poeira que se levantava à superfície, o que poderia confundir os rastreadores de estrelas que eram usados para orientar a nave espacial.

Eventualmente, a equipe da Rosetta decidiu realizar esta operação na segunda metade de maio de 2016. Este período foi escolhido, de modo que teria passado o tempo suficiente após o periélio do cometa, em agosto de 2015, e para que a atividade de poeira se tornasse menos intensa, mas não demasiado de modo que a atmosfera fosse excessivamente fina e a presença de xenônio ficasse difícil de ser detectado.

Como resultado das observações, o ROSINA identificou sete isótopos de xenônio, bem como vários isótopos de outro gás nobre, o criptônio; elevando assim para três o inventário de gases nobres encontrados no cometa da Rosetta, após a descoberta de argônio, a partir de medições realizadas no final de 2014.

Uma análise mais aprofundada dos dados revelou que a mistura de xenônio no cometa 67P/Churyumov-Gerasimenko, que contém quantidades maiores de isótopos leves do que pesados, é bastante diferente da mistura média encontrada no Sistema Solar. Uma comparação com a amostra de calibração a bordo confirmou que o xenônio detectado no cometa também é diferente da mistura atual na atmosfera da Terra.

Em contraste, a composição do xenônio detectada no cometa parece estar mais próxima da composição que os cientistas pensam estar presente na atmosfera inicial da Terra.

Existem algumas discrepâncias entre as duas composições, que indicam que o xenônio primordial fornecido ao nosso planeta, poderia derivar de uma combinação de cometas e asteroides impactantes.

Em particular, os pesquisadores conseguiram estabelecer o primeiro elo quantitativo entre os cometas e a camada gasosa do planeta: com base nas medições da Rosetta no cometa 67P/Churyumov-Gerasimenko, 22% do xenônio, outrora presente na atmosfera da Terra, pode ser originário de cometas, o resto terá sido fornecido por asteroides.

Este resultado não está em contradição com as medições isotópicas da água no cometa da Rosetta, que eram significativamente diferentes daquelas encontradas na Terra. De fato, considerando os vestígios de xenônio na atmosfera da Terra e a quantidade de água muito maior nos oceanos, os cometas poderiam ter contribuído para o xenônio atmosférico sem ter um impacto significativo na composição da água nos oceanos.

A contribuição deduzida das medições de xenônio, por outro lado, concorda com a possibilidade de que os cometas tenham sido transportadores significativos de material pré-biótico, como o fósforo e o aminoácido glicina, que também foram detectados pela Rosetta no cometa, que foi crucial para o aparecimento da vida na Terra.

Finalmente, a diferença entre a mistura de xenônio encontrado no cometa, que foi incorporado no núcleo no momento da sua formação, e o xenônio observado por todo o Sistema Solar indica que a nuvem protossolar, a partir da qual o Sol, os planetas e pequenos corpos nasceram, era um lugar bastante heterogêneo em termos da sua composição química.

"Esta conclusão está de acordo com medições anteriores realizadas pela Rosetta, incluindo as deteções inesperadas de oxigênio molecular (O2) e di-enxofre (S2), e a alta relação deutério-hidrogênio observada na água do cometa," diz Kathrin Altwegg, da Universidade de Berna, Suíça, pesquisadora principal do ROSINA.

A evidência adicional da natureza não homogênea da nuvem protossolar veio também de um outro estudo baseado em observações do ROSINA, publicado em maio na Astronomy & Astrophysics, e que revelou que a mistura de isótopos de silício observados no cometa é diferente daquela medida em outro local no Solar Sistema.

Um artigo que relata a descoberta de xenônio pela sonda Rosetta no cometa 67P/Churyumov-Gerasimenko foi publicado na revista Science.

Fonte: ESA

sábado, 13 de maio de 2017

O cometa Johnson se aproxima

Com uma magnitude de +8,5, o cometa Johnson (C/2015 V2) já é suficientemente brilhante para juntar-se às fileiras dos cometas binoculares deste ano: NEOWISE (C/2016 U1), 45P/Honda-Mrkos-Pajdusakova, 2P/Encke, 41P/Tuttle-Giacobini-Kresak, Lovejoy (C/2017 E4) e PanSTARRS (C/2015 ER61).

cometa Johnson

© Rolando Ligustri/iTelescope (cometa Johnson)

À medida que a Lua se aproxima do leste e desvanece, os céus escuros voltam apartir de 12 de maio. O momento não poderia ser melhor, com o cometa Johnson possui uma órbita hiperbólica e está fazendo um mergulho íngreme através da constelação de Boötes (Boieiro), estando no alto do céu do sudeste ao anoitecer enquanto também está atingindo seu pico de brilho.

O cometa Johnson atualmente exibe os dois tipos clássicos de caudas: uma cauda de poeira larga e brilhante, e quase em ângulo reto para ela, uma cauda iônica estreita. A cauda de poeira, embora bastante difusa, é mais fácil de ser vista. O núcleo do cometa Johnson contém carbono diatômico (C2), uma substância que brilha com uma tonalidade verde quando exposta ao vento solar.

O cometa Johnson (C/2015 V2) foi descoberto por J. A. Johnson em 3 de novembro de 2015, em imagens CCD tiradas com o telescópio Schmidt de 0,68 m da Catalina Sky Survey. Ele passa mais perto da Terra em 5 de junho, a uma distância de cerca de 120 milhões de quilômetros e chega ao periélio uma semana depois, no dia 12 de junho.

De momento, os observadores do hemisfério norte têm a melhor visão, mas no início de junho, todos receberão um pedaço da cena. O cometa mergulha para o sul ao longo do início do inverno, atravessando Virgem em meados de junho e Centaurus até o final de julho.

No momento, este cometa não é visível a olho nu, mas conforme ele se aproxima da Terra para um encontro no início de junho, ele chegará na 6ª magnitude, o que o tornará um alvo fácil para telescópios pequenos e até mesmo binóculos.

A menos que um cometa novo e brilhante seja descoberto, o cometa Johnson será nosso último cometa brilhante binocular do ano.

Fonte: Sky & Telescope

segunda-feira, 1 de maio de 2017

A divisão da cauda iônica do cometa Lovejoy

O que aconteceu com o cometa Lovejoy?

cometa Lovejoy

© Fritz Helmut Hemmerich (cometa Lovejoy)

Na imagem composta acima, o cometa foi captado no início deste mês, após o brilho inesperado e ostentando uma longa e intrincada cauda de íons. Notavelmente, o efeito tipicamente complexo do vento e do campo magnético do Sol aqui causou que o meio da cauda de íons do cometa Lovejoy se assemelhasse à cabeça de uma agulha. O cometa C/2017 E4 (Lovejoy) foi descoberto apenas no mês passado pelo notável descobridor de cometas, Terry Lovejoy.

O cometa atingiu magnitude visual 7 no início deste mês, tornando-se um bom alvo para binóculos e câmeras de exposição de longa duração. O que aconteceu com o cometa C/2017 E4 (Lovejoy), uma vez que esta imagem foi tomada pode ser considerado ainda mais notável, o núcleo do cometa parecia estar se desintegrando e desaparecendo durante o periélio, sua maior aproximação do Sol ocorrida no último dia 23 de abril.

Fonte: NASA

quinta-feira, 2 de março de 2017

Novo cometa descoberto por brasileiros

O novo astro foi descoberto pela equipe do Observatório SONEAR (Southern Observatory for Near Earth Asteroids Research).

ilustração de um cometa

© Solarseven/Shutterstock (ilustração de um cometa)

O novo cometa, denominado C/2017 D2 (Barros), foi pela primeira vez observado em 23 de fevereiro de 2017 pelo astrônomo João Ribeiro Barros e oficialmente confirmado pelo Minor Planet Center (MCP), em 1 de março de 2017.

Este é o quinto cometa descoberto pela equipe do SONEAR, observatório privado situado na cidade de Oliveira, MG, e mantido com recursos próprios pelos astrônomos Cristovão Jacques, Eduardo Pimentel e João Ribeiro Barros, autor da descoberta recente.

O cometa C/2017 D2 (Barros) é um objeto de orbita parabólica, de período muito longo, com inclinação da orbita de 31,2 graus e que deve se aproximar ao máximo do Sol em 12 de julho de 2017, quando chegará a 2,5 UA (Unidades Astronômicas) da estrela, equivalente a cerca de 375 milhões de km.

órbita do cometa C2017 D2 (Barros)

© Orbit Viewer (órbita do cometa Barros)

Atualmente, o cometa Barros está entre as orbitas de Marte e Júpiter, a 482 milhões de km da Terra, na 18ª magnitude. Por ter uma órbita extremamente grande, após passar pelo Sol seguirá para o exterior do Sistema Solar.

Fonte: SONEAR

domingo, 26 de fevereiro de 2017

Cometa pode estar perto da desintegração

O fim pode estar perto de um cometa que tem quebrado em pedaços por mais de 20 anos.

cometa 73P Schwassmann-Wachmann

© Observatório Slooh (cometa 73P/Schwassmann-Wachmann)

Em 12 de fevereiro, os astrônomos que usavam o telescópio do observatório on-line Slooh no Chile foram os primeiros a ver o núcleo do cometa 73P/Schwassmann-Wachmann se dividir em duas partes. A imagem acima mostra este novo fragmento (rotulado "BT"), que é obviamente mais brilhante (em outburst) do que o corpo principal.

Isso levanta dúvidas sobre se o cometa pode sobreviver a outra viagem ao redor do Sol. O cometa efetuará o periélio, aproximação máxima do Sol em 16 março deste ano.

"Isso coloca o núcleo do cometa sob tremendo estresse das forças gravitacionais do Sol, e parece que isso pode ter sido responsável por dividir o núcleo em dois," disse Paul Cox, astrônomo do observatório Slooh.

O cometa foi descoberto pela primeira vez em 1930, e os observadores do céu viram sinais de que o cometa se separou no final de 1995, quebrando em três pedaços. Em seguida, outro grande evento ocorreu em 2006, quando o cometa fragmentou em mais de 30 pedaços à medida que se aproximava do Sol.

Os cometas são compostos de rocha, gelo e poeira que provavelmente se originam do Cinturão de Kuiper ou da Nuvem de Oort muito mais distante, que são zonas de objetos gelados na extremidade do Sistema Solar. O cometa 73P/Schwassmann-Wachmann pertence à classe de objetos jupiterianos, que têm um período orbital relativamente curto, em torno de 5,36 anos, e vêm do Cinturão de Kuiper.

O cometa enfrenta duas grandes ameaças à sua sobrevivência nos próximos anos. Se sobreviver a esta última viagem ao redor do Sol, ele voará a 50 milhões de quilômetros de Júpiter em 2025. Júpiter é conhecido em efetuar rupturas em cometas, sendo o mais famoso o cometa Shoemaker-Levy 9 que fragmentou em várias partes em 1992 e colidiu com o planeta em 1994.

Outra ameaça em curso para o cometa 73P/Schwassmann-Wachmann é o vento solar, que é o fluxo constante de partículas que emanam do Sol. A influência do Sol no cometa perturba as camadas superficiais deste corpo pequeno, criando a coma (atmosfera cometária) e a cauda que são comuns nos cometas.

"Parece que é apenas uma questão de tempo até que o cometa 73P/Schwassmann-Wachmann seja destruído, se desintegrando em detritos de poeira cósmica," acrescentou Cox.

Se o fim estiver próximo deste pedaço de rocha espacial primordial, tal fato será registrado, pois os membros do observatório Slooh e outros astrônomos ao redor do mundo estarão observando o cometa nas próximas semanas nos dois observatórios controlados remotamente pela organização no Chile e nas Ilhas Canárias.

Fonte: Tenagra Observatories

quarta-feira, 22 de fevereiro de 2017

Quase três caudas no cometa Encke

Como um cometa pode ter três caudas?

cometa Encke

© Fritz Helmut Hemmerich (cometa Encke)

Normalmente, um cometa tem duas caudas: uma cauda de íons de partículas carregadas emitidas pelo cometa e empurradas pelo vento solar, e uma cauda de poeira de pequenos detritos que orbita ao longo da trajetória do cometa. A cauda de iônica é apontada na direção diretamente oposta à do Sol.

Frequentemente um cometa parece ter apenas uma cauda porque a outra cauda não é facilmente visível da Terra. Na imagem incomum caracterizada acima, o cometa periódico 2P/Encke parece ter três caudas porque a cauda iônica aparentemente foi separada em duas apenas quando a imagem foi tomada.

O vento solar complexo é ocasionalmente turbulento e às vezes cria rupturas na cauda iônica. Em raras ocasiões, os eventos de desconexão iônica foram registrados. Uma imagem do cometa Encke tomada dois dias depois dá uma perspectiva talvez menos desconcertante.

Fonte: NASA

segunda-feira, 16 de janeiro de 2017

Existem vulcões em cometas?

Os vulcões podem não apenas existir em luas e planetas. Um cometa orbitando entre Marte e Júpiter parece ter seus próprios sinais de vulcanismo gelado, expelindo material congelado em vez de lava quente.

29P Schwassmann-Wachman

© NASA/Spitzer (29P/Schwassmann-Wachman)

Ao invés de um único monte estagnado, no entanto, as erupções vêm de um único local várias vezes antes de finalmente viajar para outro ponto na crosta gelada.

A rotação lenta do cometa permite que a crosta se enfraqueça ao longo do dia, enquanto o monóxido de carbono se acumula novamente na superfície durante a noite. Eventualmente, a pressão sob a superfície irrompe. Ao contrário dos jatos vistos em outros cometas, a "lava" fria atravessa de repente e explosivamente, sem sinais de acúmulo gradual.

"É um evento abrupto," diz Richard Miles, cientista cometário da British Astronomical Association, que apresentou os resultados na reunião da Divisão de Ciências Planetárias em Pasadena, Califórnia. Uma vez que a explosão é finalizada, desliga-se sem o lento declínio comum aos jatos. "É o que se esperaria do criovulcanismo."

O cometa periódico 29P/Schwassmann-Wachman é o mais ativo de todos os cometas conhecidos. Pouco depois de sua descoberta de 1927, o brilho do cometa começou a mudar dramaticamente. Enquanto muitos cometas se tornam mais brilhantes à medida que viajam mais perto do Sol, o cometa 29P/Schwassmann-Wachman orbita em um círculo quase perfeito, mantendo uma distância bastante consistente da estrela. Apesar de sua órbita estável, o cometa pode fazer mudanças notáveis ​​no brilho, tornando-se um favorito para os astrônomos amadores para ser observado.

Miles e seus colegas estudaram o cometa ao longo de mais de uma década, identificando 64 explosões do objeto minúsculo. O corpo gelado pode ter apenas três a quatro explosões por ano, embora alguns anos tenham lançado sete a oito erupções. Ao rastrear sua localização sobre a superfície do cometa, os cientistas descobriram que muitas das erupções vieram das mesmas regiões. Enquanto alguns reapareceram depois de um dia, outros demoraram tanto quanto 20 anos para reaparecer, com base em observações anteriores. Foi a sua aparição repetida que levou Miles e sua equipe a investigá-los como criovulcanismo. Ao contrário dos vulcões normais, que espalham lava derretida, os criovulcões entram em erupção de gases congelados que se movem muito parecidos com seus primos mais quentes.

Os criovulcões podem ser comuns nas luas geladas do Sistema Solar, incluindo as luas de Júpiter, Europa e Ganimedes, e lua de Saturno, Titã. Os planetas anões também podem hospedar as fontes frias, pois Plutão e Ceres têm características identificadas como possíveis criovulcões. O cometa 29P/Schwassmann-Wachman não tem recursos no solo que se assemelham a vulcões gelados. Em vez disso, Miles interpreta a atividade como potencialmente vulcânica.

"Se só aparece uma vez, não é um vulcão", diz Miles. A maioria dos locais estão ativos duas ou três vezes antes de ficar sem vapor.
A atividade estranha pode ser devido ao ciclo incomumente longo dia/noite do cometa. Ao contrário da maioria dos cometas, que giram em escalas horárias, cometa 29P/Schwassmann-Wachman gira apenas cerca de uma vez a cada 60 dias (horário terrestre). Durante a longa noite do cometa, o material pode se juntar em câmaras abaixo da superfície. Quando o cometa gira em seu dia longo, o gás expande, flexionando a superfície. Altas pressões podem ajudar a saída do gás através da superfície, explodindo para fora em um evento semelhante a um vulcão. Em vez de magma quente, o gás congelado sai do cometa.

O material jorrando se comporta como a cera de parafina, diz Miles. A cera suaviza muito antes de derreter, ou se torna líquida; o mesmo pode ser verdade para o material que sobe sob a superfície do cometa. O material semelhante à cera também pode desencadear outra atividade vulcânica. Graças ao seu enorme núcleo, que é cerca de 40 km de diâmetro é muito maior do que a maioria dos outros cometas, a maior parte do material volta à superfície. Se cair sobre outros poços de material subterrâneo, pode enfraquecer a crosta o suficiente para permitir que eles explodam como seus próprios vulcões.

O fluxo de material para o espaço resulta numa coma que deve ser diferente em torno de outros cometas. A coma em torno do cometa 67P/Churyumov-Gerasimenko, visitada pela missão Rosetta da Agência Espacial Europeia  (ESA) no ano passado, era muito mais fraca, provavelmente porque se formou muito menos violentamente.

Apesar de sua atividade incomum, o cometa 29P/Schwassmann-Wachman recebeu pouca atenção de observatórios terrestres e espaciais. Miles espera mudar isso enquanto continua as explosões incomuns em um esforço para entender os ciclos estranhos no corpo distante.

A pesquisa foi publicada em uma série de artigos da revista Icarus no início deste ano.

Fonte: Astronomy